

Baseline Calibration of the GeoSAR Interferometric Mapping Instrument

by

Scott Hensley, Elaine Chapin, Randy Bartman and Delwyn Moller

CEOS SAR Workshop Toulouse, France October 27, 1999

Overview

- GeoSAR System Description
- Onboard Baseline Metrology Measurements
- Calibration Methodology
- Least Squares Estimation Specifics
- Calibration Site
- Baseline Estimation Results

Overview of GeoSAR

- Aircraft-based, interferometric synthetic aperture radar (SAR) system for topographic mapping.
 - Gulfstream II business jet
 - Day/night, all-weather, low-cost, commercial system
- Develop precision foliage penetration mapping technology based upon dual frequency, dual polarimetric, interferometric radar.
 - X-band radar (λ =3 cm) for bare ground and "tops" of trees
 - P-band (UHF) radar (λ =86 cm) for ground and foliage penetration (HH,HV)
- Produce true ground surface digital elevation models suitable for a wide variety of applications.
 - Combination yields "true ground surface" (TGS)
- Consortium of three agencies, initially funded by DARPA, current funding by NIMA.
 - Caltech's Jet Propulsion Laboratory (JPL), Pasadena, CA
 - Calgis, Inc., Fresno, CA
 - California Department of Conservation (CalDOC)

Mapping System

- Mapping System Consists of:
 - Aircraft platform to host data collection hardware (Gulfstream II)
 - Flight planning software
 - Dual frequency (X-band/UHF) interferometric SARs
 - Single polarization @ X-band
 - Dual polarization @ UHF
 - Automated radar control
 - Laser interferometric baseline measurement system augmented with embedded GPS/INU systems and differential GPS for precision reconstruction of aircraft flight trajectory and attitude history
 - SAR processors capable of producing DEMs @ X-band and UHF and a true ground surface DEM from combined X-band/UHF analysis
 - A GIS system to analyze digital data

GeoSAR End-to-End System

Data Collection Basics

- Nominally, GeoSAR will collect X and P-band data from both the left and right sides of the aircraft. Data is recorded on two SONY 512 Mb/s recorders.
- X-band data can be collected using either Ping-Pong or Non Ping-Pong mode depending on the amount of topographic relief.
- Data can be collected either using 80 or 160 MHz bandwidth modes. Data collected at 160 MHz is converted to 4-bit BFPQ data to reduce the data rate.

Two Methods of Data Collection

Non Ping-Pong

Transmission from one antenna Reception through both antennas simultaneously

Ping-Pong

Alternately transmitting out of two antennas Reception through the same antenna used for transmission only

System Parameter Overview

UHF SYSTEM PARAMETERS

Parameter	Value
Peak Transmit Power	4 KW
Bandwidth	80/160 Mhz
Pulse Length	40 μsec
Sampling	8/4 BFPQ @ 160 MHz 8 bit for 80 MHz
Antenna Size	1.524 m x 0.381 m
Antenna Gain at Boresight	11 dBi
Antenna Look Angle	27 - 60 Deg
Antenna Boresight	60 Deg
Wavelength @ Center Frequency	0.86 m for 160 MHz 0.97 m for 80 MHz
Baseline Length	20 m /40 m
Baseline Tilt Angle	0 Deg
Platform Altitude	5000 m - 10000 m

Center Frequency

350 MHz

X-BAND SYSTEM PARAMETERS

Parameter	Value
Peak Transmit Power	8 KW
Bandwidth	80/160 Mhz
Pulse Length	40 µsec
Sampling	8/4 BFPQ @ 160 MHz 8 bit for 80 MHz
Antenna Size	1.5 m x 0.035 m
Antenna Gain at Boresight	26.5 dBi
Antenna Look Angle	27 - 60 Deg
Antenna Boresight	60 Deg
Wavelength @ Center Frequency	0.031 mfor 160 MHz 0.031 mfor 80 MHz
Baseline Length	2.5 m/5 m or 1.3m/ 2.6m
Baseline Tilt Angle	0 Deg or 45 Deg
Platform Altitude	5000 m- 10000 m

Baseline Calibration Objective

• Need to determine baseline length, B and baseline attitude angle, α.

- In order to obtain accurate interferometrically derived DEMs it is essential to have very accurate baseline knowledge.
- A priori estimates of the baseline measured on the ground in general may not achieve the required accuracy because
 - phase center of antenna differs from geometric center
 - baseline may change from ground to in flight conditions (.e.g due to temperature and pressure differences)
 - accuracy of ground based measurements may not meet mapping required accuracy

JPL

Aircraft Position Determination & Measurement Systems

- High accuracy platform position and orientation required
 - Position to ~ 10 cm, altitude to ~ 25 cm.
 - Attitude (yaw, pitch, roll) to ~ 15 arc seconds.
- Honeywell Embedded GPS Inertial Navigation Units (EGI) (twin units)
 - 5 channel GPS system, high-quality INU, internal Kalman filter.
 - Precise attitude and velocity, rough GPS-only positions, smooth blended positions.
- Ashtech Z12 GPS receiver
 - Precise positions in differential mode with nearby ground station.
 - PNAV software.
- Laser Baseline Measurement System
 - Interferometric baseline length to < 1 mm and attitude to < 15 arcsecs.
- Surveyed relative positions of GPS systems on aircraft
 - Accurate to several centimeters or better.
- Kalman Filter used to estimate aircraft state
 - Combines position and velocity data.
 - Accounts for varying uncertainties and temporal spacing.

Aircraft System Illustration Aircraft, bottom view

EGI **LBMS** X-band antenna P-band antenna LBMS target phase center

Interferometric Processing

Baseline Estimation Methodology

- Use differences between expected and and measured target positions to estimate a correction to the baseline.
 - Allow for estimation of position, range and phase errors during baseline estimation in event other parameters are not known adequately a priori.
 - Allow use of multiple data sets (e.g. different altitudes, different days) for baseline estimation
- Use least squares procedure to solve for baseline correction based on three dimensional imaging and processing geometry.
 - Algorithm must include knowledge of exactly how data is processed e.g. motion compensation, atmospheric corrections, etc)

Three Dimensional Interferometric Mapping

Baseline Parametrization

• The baseline is parametrized by its length, B, orientation angle, α , and yaw angle, κ . Assuming a velocity vector with only an along track component, a look angle of θ , and squint angle β , ($\beta = \pm 90^{\circ}$ for broadside mapping, then baseline, velocity and look vectors are given by

$$\vec{\mathbf{B}} = \begin{bmatrix} B\sin(\kappa) \\ B\cos(\alpha)\cos(\kappa) \\ B\sin(\alpha)\cos(\kappa) \end{bmatrix} \quad \vec{\mathbf{v}} = \begin{bmatrix} v \\ 0 \\ 0 \end{bmatrix} \qquad \hat{\ell} = \begin{bmatrix} \cos(\beta) \\ \mu\sin(\theta) \\ -\cos(\theta) \end{bmatrix} \qquad \mu = \sqrt{1 - \left(\frac{\cos(\beta)}{\sin(\theta)}\right)^2}$$

• We define the following functions

$$g\sin(\theta,\alpha,\beta) \equiv \cos(\alpha)\sin(\theta)\mu - \sin(\alpha)\cos(\theta)$$

$$g\cos(\theta,\alpha,\beta) \equiv -\sin(\alpha)\sin(\theta)\mu - \cos(\alpha)\cos(\theta)$$

$$g\tan(\theta,\alpha,\beta) \equiv \frac{g\sin(\theta,\alpha,\beta)}{g\cos(\theta,\alpha,\beta)}$$

which for broadside mapping ($\beta = \pm 90^{\circ}$) reduces to

$$g\sin(\theta,\alpha,\beta) = \sin(\theta - \alpha)$$

$$g\cos(\theta,\alpha,\beta) = -\cos(\theta - \alpha)$$

$$g\tan(\theta,\alpha,\beta) = \tan(\theta - \alpha)$$

JPL

Least Squares Estimation I

• Baseline estimation is done using least squares with a vector of observations given by the differences between interferometrically determined target locations and their surveyed positions (2-5 cm accuracy).

$$\vec{O}_i = \begin{bmatrix} s_m - s_s \\ c_m - c_s \\ h_m - h_s \end{bmatrix}$$

where subscripts s,m denoted measured and surveyed positions and 1≤i≤N.

• The vector of observations can be truncated to use only cross track or vertical measurements is desired. The observations are weighted by covariance estimates derived from the interferometric correlation.

$$C_{i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \left(\frac{\partial c}{\partial \phi}\right)^{2} \sigma_{\phi}^{2}(\gamma) & 0 \\ 0 & 0 & \left(\frac{\partial h}{\partial \phi}\right)^{2} \sigma_{\phi}^{2}(\gamma) \end{bmatrix}$$

Least Squares Estimation II

• The vector of parameters to be solved for is

$$\vec{P} = \begin{bmatrix} \Delta B & \Delta \alpha & \Delta \kappa & \Delta \rho & \Delta \phi & \Delta P_s & \Delta P_c & \Delta P_h \end{bmatrix}^{t}$$

and the least squares solution is

$$\vec{P} = \left(\sum_{i=1}^{N} A_i^{t} C_i^{-1} A_i\right)^{-1} \left(\sum_{i=1}^{N} A_i^{t} C_i^{-1} \vec{O}_i\right)$$

where A is the matrix of partials of the observations with respect to the parameters to be estimated.

$$A = \begin{bmatrix} \frac{\partial T_s}{\partial B} & \frac{\partial T_s}{\partial \alpha} & \frac{\partial T_s}{\partial \kappa} & \frac{\partial T_s}{\partial \rho} & \frac{\partial T_s}{\partial \phi} & \frac{\partial T_s}{\partial P_s} & \frac{\partial T_s}{\partial P_c} & \frac{\partial T_s}{\partial P_h} \\ \frac{\partial T_c}{\partial B} & \frac{\partial T_c}{\partial \alpha} & \frac{\partial T_c}{\partial \kappa} & \frac{\partial T_c}{\partial \rho} & \frac{\partial T_c}{\partial \phi} & \frac{\partial T_c}{\partial P_s} & \frac{\partial T_c}{\partial P_c} & \frac{\partial T_c}{\partial P_h} \\ \frac{\partial T_h}{\partial B} & \frac{\partial T_h}{\partial \alpha} & \frac{\partial T_h}{\partial \kappa} & \frac{\partial T_h}{\partial \rho} & \frac{\partial T_h}{\partial \phi} & \frac{\partial T_h}{\partial P_s} & \frac{\partial T_h}{\partial P_c} & \frac{\partial T_h}{\partial P_h} \end{bmatrix}$$

Baseline Sensitivity

• Baseline errors give position errors along perpendicular to the line of sight and velocity vectors.

JPL

Phase Sensitivity

• Phase errors give position errors along perpendicular to the line of sight and velocity vectors.

JPL

Range Sensitivity

Platform Position Sensitivity

Derivative Correction for Spherical Earth

• Since the interferometrically derived fiducal point position measurements are in a spherical coordinate system we must correct the tangent plane position (primed) derivatives to derivatives that represent position changes with respect to the spherical coordinate system (unprimed).

$$\frac{\partial s_T}{\partial \zeta} = \frac{r_a}{s_T'^2 + (r_a + h_T')^2} \left\{ (r_a + h_T') \frac{\partial s_T'}{\partial \zeta} - s_T' \frac{\partial h_T'}{\partial \zeta} \right\}$$

$$\frac{\partial c_T}{\partial \zeta} = \frac{r_a}{\sqrt{s_T'^2 + (r_a + h_T')^2}} \left\{ \frac{\partial c_T'}{\partial \zeta} - \frac{c_T'}{(r_a + h_T)^2} \left[\left(c_T' \frac{\partial c_T'}{\partial \zeta} + s_T' \frac{\partial s_T'}{\partial \zeta} \right) + (r_a + h_T') \frac{\partial h_T'}{\partial \zeta} \right] \right\}$$

$$\frac{\partial h_T}{\partial \zeta} = \left(\frac{r_a + h_T'}{r_a + h_T}\right) \frac{\partial h_T'}{\partial \zeta} + \frac{1}{r_a + h_T} \left(c_T' \frac{\partial c_T'}{\partial \zeta} + s_T' \frac{\partial s_T'}{\partial \zeta}\right)$$

Calibration Site

- Base at Hunter-Liggett chosen as the primary calibration site
- Calibration targets placed to minimize topographic height variations and maximize estimation sensitivity
- Additional targets on opposite side and within-scene along track
- Corner reflectors have been deployed

Deployed:

12 X-band trihedrals

Main Target Array

Map of Hunter Liggett

Position Offsets Before Calibration

PLOT HERE

Position Offsets After Calibration and Baseline Errors Estimates

PLOT HERE

Perspective View with Shaded Relief Overlaid

Conclusions

- Accurate baseline estimates for aircraft systems can be obtained with a well arranged set of corner reflectors.
- The X-Band GeoSAR baseline was estimated to an accuracy of .1 cm.